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SECTION |

INTRCDUCTION

KEngine components have traditionally been designed using a crack initiation criterion.
This approach has been very successful from a safety standpoint, but the conservatism inherent
in this method has resulted in poor utilization of the intrinsic life of the component. The
development of high temperature fracture mechanics has permitted basing residual iife analyses
on a crack propagation criterion. Using this approach, lives from a apecifed defect size can be
calculated and combined with periodic inepection to determine component retivement.

Propagation analyses classically employed in residual life predictions are deterministically
based. They typically account for materials scattor by the incorporation of a safety factor. A
more rigorous treatment of materials scatter is necessary to permit maximum utilization of

component life.

The objective of this program was to ¢evelop a methodology capable of incorporating the
scatter observed in crack growth data into component residual life analyses. Such a methodology
is desired for use in damage-tolerant and retirement-for-cause (RFC) concepts. This objective
included: identification of the distribution functions which best describe crack growth rate
(da/dn) behavior; characterization of fatigue-crack progagation (FCP) controlling parameters ag
to their effects on crack growth rate variability; examination of the correlations between this
variability and propagation life distributions; and development of a generic methodology
applicable to all engine materials, although particular program emphasis was placed un IN100,
Waspaloy, and Ti 6-2-4.6.

Two fr.. sre mechanics-based statistical models for fatigue crack growth damage
accumulation in engine materials were proposed and investigated (Reference 1). These models
were based on hyperbolic sine crack growth rate functions developed by Pratt & Whitney
Aircraft (Reference 2). Test results of IN100 (a superalloy used in the F100 engine) at various
elevated temperatures, loading frequencies, stress ratios, etc., were compiled and analyzed
statistically. The statistical distributions of (1) crack growth rate; (2) propagation life to reach
any given crack size; and (3) crack size at any service life, were derived and reported. It was
demonstrated that the correlation between the IN100 test results and the two statistical models

was very good.

In this report, the lognormal statistical model (Reference 1) is extended to the case of
spectrum loading. Test results for IN100 under block type loading are generated and used to
evaluate the capability of this model for predicting the statistical distributions of (1) the life to
reach any given crack size; and (2) the crack size at any given service life, A good correlation is
shown between the mordel and the test results.

The lognormal statistical model is also applied to a power law (linear) crack growth rate
function (i.e., Paris equation). Test results for IN100 under various conditions used to evaluate
the hyperbolic sine function (Reference 1) are also used to cvaluate the Paris function. This
model is unly applicable within a certain range of stress intensity and care should be exercised in
its application. The Paris model proves to be mathematically simple for practical engineering
applications.

Available fatigue crack growth rate data for Ti 6-2-4-6 and Waspaloy under various test
conditions are also analyzed statistically. The lognormal statistical modsl, along with either the
Paris or hyperbolic sine crack growth rate function, is shown to correlate well with the test

results,
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The lognormal model, using both the hyperbolic sine and the Paris equations, is applied to
the homogeneouas data set of Virkler, et al. (References 3 and 4). It is shown that the Paris
relaiion does not provide a reasonable represeniation of this data set. Finally, a new statistical
theory is proposed for the analysis of fatigue crack propagation. This theory is based on the
concept of fracture mechanics and random processes. Examples are presented to demonstrate
the application of the new theory using available test results.
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SECTION Il

FATIGUE CRACK GROWTH UNDER SPECTRUM LOARING CONDITIONS

Two statistical fracture mechanics-based models for predicting the fatigue crack propaga-
tion life of engine materials under any single test condition have been proposed and investigated
in Reference 1. These models are based on the hyperbolic sine crack growth rate function
developed by Pratt & Whitney Aircraft, It has been demonstrated that the correlations between
the proposed statistical models and the test results are very good.

A single teat condition is defined by a single constant value of each of the following
parameters: temperature T, loading frequency », stress ratio R and maximum load P,,,.. Service
loading spectra to engine components, however, consist of variable histories of temperature T,
frequency », loading magnitude R and P,,,,, and holding time T),. The objectives of this section
are: (1) to extend a statistical model proposed in Keference 1 for any single test condition to be
capable of predicting the fatigue crack propagation of engine materials under spectram loadings,
(2) *o conduct experimental tests using IN100 compact tension specimens subject to loading
spectra in order to generate statistically meaningful data, and (3) to correlate the teat resultsy
with the propossd statistical model for verification purposes.

1. Theoretical Model

/
‘The lognormal crack growth rate model proposed in Reference 1 for a single teat condition
is expressed as

Y = C,sinh[Cyq(X+Cy} + C; + Z @

in which C, is a material constant, C;, C, and C, are functions of test conditions (T, », R) and

da
- ’ - l
Y = log r're X ogAK @

where AK is the stress intensity range. In Equation 1, Z is a normal random variable with zero
mean and standard deviation o, that also depends on the test conditions (see Reference 1).

In order to extend the statistical model given by Equation 1 to account for the crack
propagation under spectrum loadings, the composition of loading specira will be described as
follows: A loading spectrum is assume ' to consist of repeated identical cycle blocks (or missions
or duty cycles). Each cycle block (or duty cycle) is composed of m different segments (or m test
conditions). Each segment or test condition is defined by constant values of temperature T,
loading frequency », stress ratio R, maximum load P_, and numbers of load cycles n. Therefore,
the jth segment in one cycle block (or duty cycle) can be denoted by (T, v Ry P n,) whereas
one cycle block consists of (T}, v, Ry, Py, my) for j=1,2,...,m, as schematically shown in Figure 1.

For the jth test condition, or segnient, in one cycle block, it follows from Equation 1 that

Y, - Clﬂinh[Cm(x+Cm)] + C“ + Z, H j-l,ﬂ,..‘,m (3)

in which Z, is a normal random variable with zero mean and standard deviation Oy Values of Cm,
Cyp C“and‘ o, for different test conditions are given in Reference 1.
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Figure 1. Representation of One Cycle Block

Since Z, is a statistical variable, a specimen having a faster crack growth rate will preserve i

it over the entire crack propagation life in the jth test condition, and the variability of Zis *

4 exclusively contributed by the material variahility (loading is deterministic) as described in
' Reference 1. Hence, under spectrum loadings Z, for j=1,2,3,..,m are completely correlated not
only in one cycle block but also over the entire crack propagation life. Consequently, Equation 5
can be integrated segment-by-segment not orly in one cycle block but also over the entire X
propagation life to obtain the crack length a(n) as a function of the number of load cycles, n (or “;
cycle blocks).

For simplicity, the crack propagation in the first cycle block ia illustrated by the following,
Let 7, be the y percentile of the normal random variable Z, associated with the jth segment.

R Y% = PlZ;>zp] = 1 ~ ®(z./cy)
o 1> 2y W ey @)

in which & ( ) is the siandardized normal distribution funetion and oy is the standard deviation
of Zj. The determination of o, was described in Reference 1. ‘

'The « percentile, z,, of Z; can be obtained from Equation 4 as \

By = U‘JLI)“‘ (1 - %) forj-1,2,...,m )

where ¢! () is the inverse standardized normal distribution function.
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The v percentile of the crack growth rate for the jth segment, denoted by Y),,, follows from
Equation 3 as

Y;, = Csinh[Cy(X + Cy)]+ Cy + 2z, forj=1,2,...,m ©

Then, Equation 6 can be integrated segment-by-segment to yield the v percentile of the crack
length a, (n) versus the number of load cycles n as follows:

.}
a,(n) = 8, + :‘i Anyy
-1

a n, + 1) = a,(n) + ?_l Aag, -

a, (E n,) -8, (E n,)+§lAa,¢

in which 8 is the initial crack size, a (nl) is the + percentile crack length after the first segment
that consists of n, load cycles, and Aa, i i8 the increment of the crack length during the kth load
cycle in the first segment which is coraputed numerically using Equation 6 for j=1 as follows:

Y y ™ C,Hinh [C“(x""‘Cn’] + C“ -+ z,,, (8)

In Equation 8, z,, is determined from Equation 6 with j=1. Other notations appearing in
Equation 7 are self-ex 1anatory for segment by segment numerical integrations.

Repeating numerical integrations similar to Equation 7 and using appropriate initial crack
lengths for each segraent and cycle block, we obtain one v percentile for the crack length, a _ (n),
as a function of load cycles n. Furthermore, by varying values of v, we obtain the distribution of
the crack length as a function of load cycles as shown in Figure 2, It should be noted that the
numerical integration to generate a set of a, (n) ie deterministic, straightforward, and very
simple.

The approach described above recognizes the difference of the statistical dispersion of the
crack growth rate, da/dn, for each segment (or test condition). However, since the spectrum
loading is idealized by repeated identical cycle blocks, it may be reasonable to average the
statistical dispersion of the crack growth rate for each segment over one cycle block and to
approximate the statistical dispersion of the crack growth rate for one cycle block by such an
average value, Such an approximate approach is described in the following:

The coefficient of variation of the crack growth rate V,in the jth segment is related to 7y
through

R R o

Then, the coefficlent of variation, V, of the orack growth rate for one cycle block is
approximated by the weighted average of \/ associated with all segments in one cycle block, i.e.,

V = ‘§l V} n,/ E n; (10)
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and Equation 3 is approximated by

in which Z is & normal random variable with zero mean and standard deviation ¢, which is
related to V (Equation 10) through

Vin(1+V?/2n10 12)

1% | 10% J 26% 50% 75% 20% 95%

Crack Size, a

Cycles, n

ED 235604
Figure 2. + Percentiles of Crack Length Versus Number of Cycles

Therefore, the statistical dispersion of the crack growth rate over the entire loading
spectrum is characterized, in approximation, by the random variable Z.

Applying the same procedures described previously, with all Z, (j=1,2,...,,m) being replaced
by Z, one dan obtain the distribution of the erack length as a funcéxon of load cycles shown in
Figure 2,

To account for the scatter of crack propagation life in the prediction of engine components,
two distributions are of pracucal importance: (1) the distribution Fy,,(n) of the propagation
life N(a,) to reach any given crack length a, (including the critical crack length), and (2) the
dmtributlon, W((X), Of the crack length a(n) after any specific number, n, of load cycles. In fact,
the distribution of the crack length as a function of load cycles shown in Figure 2 containe all the
information mentioned above. For instance, by drawing a horizontal line through any specitic
crack length 4, in Figure 2, one obtains the distribution, Fy,,,(n), of the number of load cycles
to reach that crack length. Likewise, the distribution, F,,(x), of the crack length a(n) after a
given number, n, of load oycles can be obtained by drawing a vertical line through n in Figure 2.

A computer program based on the above theoretical model (Equations 6-8) has been
established to predict the crack growth damage accumulation for any given loading spectrum.

¢
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No attempt was made in this program to account for retardation or acceleration effects,
although the statistical model developed can be modified to take these effects into account.

2. Experimental Program

An experimental test program has been carried out in order to verify the capability of the
proposed statistical model in predicting the crack propagation behavior of engine materials
under spectrum loading, The specimens used were ASTM compact tension specimens with a
thickness (B) of 0,5 inches (12.7 mm) and width (W) of 2.5 inches (63.5 mm). The initial flaw
size (ay) is 0.5 inches (12,7 mm) and the final flaw size (ag) is 2.0 inch (50.8 mm).

The spectrum loading employed wss composed of repeated block loading (or cycle block)
consisting of four test conditions (segmeuiz) as shown in Figure 3. Each segment was applied for

1,000 cycles with the next test condition in svccession. The entire block was repeated after test
condition number 4. This procedure was contin ued until specimen fracture occurred.

Test Test Test Test

Condition Condition Condition Condition
- 1 2 3 4

max
Load, P h

Start Over

J

V4
g
~
4
-~
4

i
Cycles, n
Test Condition 1 1200°F, 10 cpm, R = 0.1 1,000 Cycles
Test Condition 2 1360°F, 10 cpm, R = 0,1 1,000 Cycles
Test Condition 3 1200°F, 10 ¢pm, R = 0.5 1,000 Cycles
Tast Condlilon 4 1000°F, 10 cpm, R = 0,1 1,000 Cycles
FD 247364

Figure 8. Laboratory Spectrum Test Loadi..g Conditions for IN100
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In one block loading, the maximum load, P_,,, for each segment was fixed at 2.4 kips
(10.7 kn) with all positive stress ratios, R, in order to eliminate the need for consideration of
retardation or acceleration effects due to overloads or underloads. The results of twelve tests are
summarized in Table 1, and displayed in Figure 4. A complete listing of these tests is shown in
the Appendix. The three solid curves shown in Figure 4 are the theoretical predictions that will
be described later.

TABLE 1, VERIFICATION TEST RESULTS FOR

IN100
Final
Crack Cycles to
Specimen Length Failure Cycles at
No. a N 1.4 inches
1, 2396 174 100,000 97,600
2, 2397 1.68 65,000 62,000
3 2398 1.88 88,000 85,800
4 2999 148 73,000 72,800
5. 2400 1.84 70,000 68,500
8. 2401 148 97,000 96,500
7 2402 1.63 85,000 82,000
8 2403 1.63 75,000 73,300
9, 2404 1,58 115,000 113,800
10. 2405 1.41 81,000 81,000
1L 2408 1,53 81,000 80,000
12, 2407 1.45 £5,000 84,500

Failure: Mean Life (N) = 82,800
Standard Deviation = 14,800
Mean Life at 1.4 in. = 81,800
Standerd Deviation = 16,000

For theoretical predictions the parameter values C,, Cy and C,, as well as the standard
deviation o, of Z; under each test condition (or segment) in one block loading, Figure 3, have
been estimated using the method of maximum likelihood in Reference 1. The results are shown
in Table 2 along with the total number of test specimens used. The parameter C, is a material
constant which is equal to 0.5 for IN100. Note that the parameter values presented in Table 2
were estimated using compiled IN100 crack growth rate data, which were generated over a long
period of time for different purposes (Reference 1). The total number of test spocimens under
each test condition is very small. Even with such a small sample size, the specimen dimensions,
the initial and final flaw sizes, and the maximum cyclic load for vach test specimen are all
different. Thus, the data base used for estimating the parameter values is highly nonhomoge-
neous; however, it is representative of the expected data base found in industry (see
Reference 1),

Using the statistical model described in the previous section, Equation 7, and Table 1, we
construct various y percentiles for the crack size, a,(n), as a function of the number of load
cycles n, The results are shown in Figure 5 as solid curves and the numerical velues are
presented in the Appendix, For instance, the curve associated with y:=10 indicates that the
probability is 10% that a specimen will have a crack size growing faster than that denoted by
the curve. These sulid curves are the predicted distribution of crack growth damage
accumulation based on the statistical model. The crack propagstion associated with =56, 50 and
96 percentiles are also shown in Figure 4 as solid curves for the purpose of comparison with test
results,
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TABLE 2. PARAMETER VALUES C,, C; AND C, AS WELL A8

L STANDARD DEVIATION o,
! Test Number of '
b Segment  Condition C; e, c, o, Specimans !
o 1 5 38982 -1.5376  -39341  0.1026 9

P 2 2 49323  -14073  -3.8885  0.1692 4

P 3 3 43083  ~1,3032  —44450  0.1240 4 '
Lo 4 1 38033  -15239  —4.3563  0.1673 5 :
- =
| g
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Figure 6. Predicted Crack Size Versus Cycles Behavior Under Spectrum Loading

3. Correlation Between Statistical Model and Experimental Test Resuits

: As observed from Figure 4, the statistical model predicts faster average crack growth
1 damage accumulation and slightly larger statistical dispersion. Thus, from the analysis and :
design standpoint, the statistical model is congervative. The correlation between the test results

and theoretical prediction appears to be very reasonable,

The theoretical prediclions for the statistical distribution of the number of load cycles to :
reusch crack sizes 0.8 and 1.4 inches (20.3 and 35.6 mm) are presented as solid curves ia Figures 6 )
and 7, respectively. Also plotted in these figures as circles are the experimental test results for
twelve specimans. Furthermore, predictions for the probability of crack exceedance, which is
equal to one minus the distribution function of the crack size, at 24,000, and 35,000 load cycles
are displayed in Figuros 8 and 9 as solid curves, respectively. Also shown in these figures as
circles are the corresponding experimental test results. Again, Figures 6 to 9 indicate that the
statigtical model is slightly conservative, in the sense that the model predicts shorter crack :
propagation life and larger statistical dispersion. The correlation between the theoretical model .

and the teat results is very reasoncble.
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Figure 6. Distribution of Cycles to Reach 0.8 Inch, for the IN100 Mission Verification
Test

Cycios, n — X 104
FD 265005

Figure 7. Distribution of Cycles to Reach 1.4 Inchos for the IN100 Mission Verification
Test
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n = 24,000 Cycles

ol | J
0.6 0.6 0.7 0.8 0.9 10

Crack Size a ~ In.

Figure 8. Probability of Crack Exceedance at 24,000 Cycles for IN100 Misgion
Verification Testing
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Figure 9. Probability of Crack Exceedance at 35,000 Cycles for IN100 Mission
Verification Testing
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Since the initial crack size is deterministic, which is equal to 0.5 inch (12,7 mm), the
deviation between the theoretical predictions and the test results is expected to increase as the
number of load cycles increases. This is clearly demonstrated by the crack exceedance curves
shown in Figures 8 and 9. Furthermore, the statistical dispersion of the crack size increases with
respect to the number of load cycles as exemplified by these figures, Hence, the maximum
discrepancy occurs when the random number of load cycles reaches a 1.4 inch (35.6 mm) crack,
that is very close to the critical crack size (see Figure 4), It is observed from Figure 7 that the
discrepancy in predicting the average number of load cycles to reach a 1.4 inch (36,6 mm) crack
is approximately 13%.

Some of this conservatism may be due to retardation at the crack tip caused by the change
in yield stress as a function of temperature. The size of the plastic zone is inversely proportional
to the square of the yield stress, At the 1350°F test condition, the lower yield stress will cause a
larger plastic zone which will retard the crack when the temperature is decreased to 1200°F.
This will alsc occur from the 1200°F to the 1000°F temperature change. 'The initial retardation
of the crack growth rate in each test condition would result in a longer test life than the
predicted life, as the computer program (theoretical model) does not address retardation effects.

From the statistical standpoint, the main reason for a slight discrepancy comes from the
compiled data base as described in the following.

The thooretical prediction is computed based on the parameter values Gy, Gy, C, and oy
forj = 1,2, 3, 4, These parameters values were estimated using a compiled data set tlor each test
condxtlon whwh was generated over a long period of time for different purposes. As a result, the
specimen preparations, heat treatments and processes of materials, test machines, measure-
ments and environments, etc. will not be identical to those specimens tested under the present
program, The number of test specimens compiled for the data base fur each test condition is also
very small (see Table 1), Likewise, the data base is highly inhomogeneous, indicating that the
specimen dimension, initial and final flaw sizes, and the maximum applied load are all different
for each test specimen. Consequently, it may be reasonable to expect some inconsistencies
between the highly inhomogeneous data base, from which the theoretical model parameters are
calibrated, and the homogeneous test results generated in the present program, Nevertheless,

the worst discrepancy is only 13% on the conservative side, which is quite reasonable in
practice.

In practical situations, however, the data base is usually not. plentiful, highly nonhomoge-
neous, and compiled over a long period of timne under different test environments, Nevertheless,
such a homogeneous and limited data base can be used to calibrate the mordel parameters. and
the present statistical model is capable of predicting the crack propagation behavior under
spectrum loading.

One important aspect of the fracture mechanics approach is that available crack growth
rate data from inhomogeneous data bases can be pooled together to estimate the crack growth
rate parameters, although the type of specimen, the specimen dimension, initial and final flaw
lengths, and the maximum cyclic load for each test specimen may be diferent in the data base.
In contrast to other statistical models (e.g., References 14, 15, 18-21}, the statistical model
proposed herein is based on fracture mechanics, thus it possesses the same important advantage
pertinent to the fracture mechanics approach

Finally, the present statistical model does not address the retardation or acceleration
effects. Further research is needed in this regard in order to provide a better prediction

capability necessary for retirement-for-cause analysis of engine components under service
loading spectra,




SECTION 1l

LOGNORMAL STATISTICAL MODEL APPLIED TO THE PARIS EQUATION FOR IN100

The lognormal crack growth rate model has been applied to data for IN100 at various test
conditions using the hyperbolic sine (SINH) function (Reference 1). In this section, the
lognormal model is developed for the Paris crack growth rate function., Emphasis is on the
simplicity of this model for practical application. The distributions of propegation life to reach
any specific crack size and the distribution of crack size at any service life are derived. The
correlation between the extrapolated test results for IN100 and the statisticni model is shown to
be reasonable.

The Paris crack growth rate equation is given by

da - b
dn- — QlaK] 13)

in which a = crack size after n load cycles, AK = stress intensity range, Q and b are functions of
temperature T, loading frequency v, stress ratio R and others.

To account for the statistical variability of the crack growth rate da(n)/dn, the
deterministic orack growth rate function (Equation 13) is randomized as follows

da - b

in which X(AK) is a non-negative random function taking values around unity, and introduced
to reflect the atatistioal nature of the crack growth rate.

Tuking the logarithm on both sides of Equation 14, one obtains

Y = bU + q, + Z(AK) (16)

in which

da
Y =1 — U =1 K
' ogA (16)

q = logQ, Z(AK) = log X(AK)

Whereas X(AK) is a random funetion, the solution for the statistical distribution of the
crack growth damage accumulation is rather complicated (e.g., Reference 5). In this connection,
two extreme cases of the random function X(AK) should he mentioned. At one extreme, X(AK)
is completely independent at any two values of the stress intensity range, referred to as the
white noike process. Based on the central limit theorem, it can be shown that the statistical
variability of the crack size or the fatigue life, after integrating liquation 14, is the smallest
within the class of random funetions. Hence, it is unconservative for engineering analyses and
applications, Also, the mathematical solution for the white noise random procese model is
difficult. At another extreme, the random function X (AK) is totally correlated at any two values
of the stress intensity range, indicating that X(AK) is a random variable, i.e., X(AK) = X. For
the case of random variable X, the ntatistical dispersion of the fatigue crack growth damage
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accumulation is the largest in the class of random functions. Consequently, the random variable

model is conservative for the prediction of the crack propagation life and for practical
applications,

Because of mathematical simplicity in analysis and the conservative nature in crack
propagation prediction, we shall investigate the random variable model, i.e., X(AK) = X is a
positive random variable taking values around unity, It is assumed that X follows the lognormal
distribution with a median equal to unity. Tests for goodness of fit for the lognormal
distribution will be performed later.

It follows from Equation 16 that Z = log X is a normal random variable with zero mean. By
virtue of Equation 15 the log crack growth rate, Y = log(da/dn), is a normal random variable
with mean value y, and standard deviation o, given by

= bU +
Hy q a17)

dy=ﬂx

(18)

in which it is obvious that the mean value p is a function of AK, and the standard deviation ¢, is
a constant.

The parameters b and q (or G), as well as the standard deviation «, (or o, ,), given in
Equations 15 through 18 car be estimated from the test results of the crack growth rate versus
the stress intensity range using Equation 15 and the method of maximum likelihood estimate.
Since Y and Z are normal random variables and Equation 3 is linear, the method of maximum
likelihood is identical to the linear regression analysis and the method of least squares.

Test results from compact tension specimens, for log crack growth rate Y = log (da/dn)
versus the log stress mtensxty range U = log AK are presented in ¥igure 10 as discrete points for
five IN100 specimens in the test condition No. 1 (T = 1000°F, v = 10 cpm, R = 0.1). The crack
growth rate data shown in Figure 8 have been used to estimate b, Q and o, using the method of
maximurn likelihcod. The r ‘sults are presented in the first row of Table 3 and plotted in Figure
10 as a solid straight line for ¢, = 0. The maximum likelihood estimates of b, Q and o,

determined from the test results of Y versus U using ASTM CT specimens, are shown in Table 3
for different test conditions (»,R,T).

The power law for the crack growth rate (Equation 14) holds only in the central region of
AK. In the regions where AK is either too low or too high, the crack growth rate appears to
behave asymptotically. Hence several data points for the crack growth rate have already been
censored in Figure 10. Also, the crack growth rate data seem to scatter around the solid straight
line indicating the validity of the Paris function.

To show the validity of the assumption that Z follows the normal distrihution, sample
values of Z, aenoted by z, are computed from test resulis of the log crack growth rate Y = log
da/dn versus log stress mtensxty range U = log AK, denoted by (y,,u), using Equation 15

= ~ bu, — forj=1,2,...,
ZJ y] i q ur j n (19)

in which b and q have been estimated by the method of maximum likelihood and n is the total
number of test data.
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Figure 10. Datn for Crack Growth Rate Versus Stress Intensity Runge for Test
Condition No. 1

TABLE 3. MAXIMUM LIKELIHOOD ESTIMATE OF b,
!, Q, STANDARD DEVIATION ¢, AND
. COEFFICIENT OF VARIATION OF da/dn

Test Coef. of No. of

Condition* b Q a,=q, Variation Data

1 1 2.0817 5.016%10°* 0.1515 36.0% 261
2 2.9216 7.409x107° 0.1455 34.5% 147

3 2.8439 7.141%10°° 0.1038 24.3% 129

4 2.3850 1.870%10"8 0.1961 46.2% 185

. 5 23180 3.141x10°8 0.1131 26.6% 338

i Average 33.3%

*Teat Conditions

T = 1000°F, » = 10 cpm, R = 0,1
T = 1350°F, v = 10 cpm, R = 0.1
T = $200°F, » = 10 ¢pm, R = 0.6
T = 1200°F, » = 20 ¢cpm, R = 0,06
T = 1200°F, v = 10 cpm, R = 0,1

Aol

Sample data of Z (j=1, 2, ..., n) for test condition No, 3 are plotted on normal probability
paper in Figure 11 as circles along with a straight line representing the estimated normal
distribution for Z (with zero mean and standaid deviation o, determined prevxously, see Table
3). A linear scale is used in Figure 11 in which the sample data 2, 2i@ arranged in an ascending
order, i.e, 2, < 2, < 2,... =i z,, and the ordinate corresponding to zJ is given by ®7![§/(n41)) with
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&7 1{ ) being the inversed standardized normal distribution function. It is observed from Figure
11 that the sample values of Z are scattered around the straight line without a nonlinear irend,
indicating that the normal distribution is acceptable.

Oo

o / Test Condition 3
] |
-1 -~0.5 0 0.5 1

Figure 11, Normal Probability Plot for Z (Test Condition No. 3)

L The Kolmogorov-Smirnov test for goodness of fit was performed to determine the observed
5 . K-8 statistic D,. The normal distribution was found to be acceptable at least at a 10% leval of
* significance,

¢,

\' Since Z = log X and Y = log da/dn are normal random vaiiables, the crack growth rate G =
al\ ‘ da/dn follows the lognormal distribution. The coefficient of variation, V, of da/dn is related to
! the standard deviation, v, = a, through

g - o tnlt) 12
L Vv [e(yl 10) 1] )

The coefficients of variation, V, for the crack growth rate, G = da/dn, for five test conditions are
. tlao presented in Table 3.

The distribution of Z, and Y = log[da/dn], are both normal with the same standard
deviation, ¢ = oy, that has been determined previously. Let z, be the v percentile of Z, i.e.,

. ——

Y% = PlZ>z,) = 1 ~ &(z,/0,)

g (21) ¥
I A
B} or inversely, v
J H g
| 2, = g, %71 — v%) , g
| " ’ (22)




The v percentile of the log crack growth rate Y, denoted by y, (AK,b,q), follows from Equation 3
as

v{aK,b,q) = bU + q + z, (23)

in which z, is given by Equation 22, Note that ¥, (aK,b,q) is a function of b and q which in turn
depend on test conditions (v, R, and T),

Therefore, by varying the value of v, one obtains the distribution of the log crack growth
rate in terms of percentiles. The results are shown in Figure 12 for test condition No. 1 (v =
10 cpm, R = 0.1 and T = 1000°F). As an example, the crack growth rate path associated with «
= 10 indicates that the probability is 10% that a specimen will have a growth rate faster than
that shown by the curve.

_2’__

log(dasdn}

Test Condition 1

| 1 |

0.8 1.1 1.4 1.7 2.0 2.3
log(dalta k)

FN) 286034

Figure 12. Percentiles of Log Crack Growth Rate as o Function of Log Stress Intensity
Range for Test Condition No, I

The v percentile of the random variable X, denoted by X,, is computed from Equation 4 as

L} l'
X, = (10) a

in which z,is given by Equation 10,

The y percentile of the crack size after n load cycles, denoted hy a,, is obtained by
substituting Equation 24 into Equation 4

da

L -~ X.Q[AK,)"
Tn Q[AK,) (25)
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i which the stress intensity range AK, for the ASTM CT specimen is expressed as

AP
AK. = —
v T Byw el (26)
where B = specimen thickriess, W = specimen width, AP = applied load range and

2+a
fla,] = Fa—)—’_/? (0.866+4.64a—13,32a°+14.72a%—5.6a') an
ﬂ"

“Tw (28)

Thus, Equation 25 can be integrated numerically over particular limits to obtain a set of
crack lengths, a,(n), veraus the number of load cycles, n, for different v percentiles. It should be
mentioned that the numerical integration using Equation 25 for each y percentile of the crack
length, a.(n), is deterministic and straightforward.

Test environments, including the initial crack size a,, the final crack size a, the maximum
load P,,, and the width W and thickness B of the ASTM CT specimen, are assumed for each
test condition as shown in Table 4. The necessity to assume homogeneous test environments in
Table 4 for the correlation study has been described previously (Reference 1). Integrating
Equation 25 and using Tables 3 and 4, one obtains five sets of crack length, a_, as a function of
the number of load oycles, n, for different v percentiles. Only the results for test conditions
No. 1 and No. 2 are dispiayed in Figure 13.

TABLE 4. ASSUMED HOMOGENEOUS TEST ENVIRON-
MENTS FOR TEST SPECIMENS

Test a, q w B P
Condition _(in) (in.) (in) (in.) (kips)
1 0.5 2.0 2.502 0,250 1.400

2 0.5 20 2.503 0.501 2,600

3 0.5 1.8 2.000 0.500 2.600

4 0.5 2.0 2,508 0.500 3.000

5 0.5 20 2.497 0.501 3.633

a, ' initial crack size
a;, = final crack size

W = gpecimen width

B = spevimen thickness
P = maximum load

In the life prediction of engine components, two statistical distributions are of practical
importance; (1) the distribution function, Fy, z, of the number of cycles, N(a,), to. reach any
given crack length, a, and (2) the distribution function, F,(x), of the crack length a after any
number of load cycles n. Since Figure 13 represents the distribution of the crack length as a
function load cycles n, it contains all the information needed to determine the distributions
mentioned above. For ingtance, by drawing a horizontal line in Figure 13 through a crack length
of interest, the distribution for the number of cycles to reach that crack length is obtained.
Likewise drawing a vertical line in Figure 13 through a given load cycle n, one ohtains the
distribution of the crack length after n load cycles. The complement, F,(x), of the distribution
function, F,(x), of the crack length, i.e, Fy(x) = 1 — F,(x), is the probability that the crack
length after n cycles will exceed a certain value x. Hence, the plot of F;(x) is referred to as the
crack exceedance curve.
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Model; (a) Test Condition No. 1, (b) Teat Condition No. 2

20

o it £ go dinw o Ouldy amdmbre b o

e mmiemcima i M e U daae o Ml



For instance, the distribution function, Fy,,, for the number of load cycles to reach the
crack lengths a, = 1.0 and 2.0 inches is obtained from Figure 13 and displayed in Figure 14 as a
solid curve for test condition No. 1. For the same condition, the crack exceedance curve Fy(x)
after n = 25,000 cycles is shown in Figure 15 as a solid curve,

In a similar manner, the distribution functions for the number of load cycles to reach
certain crack sizes and the exceedance curves after certain number of load cycles for test
conditions No. 2 to No. 5 are presented in Figures 16 through 23 as solid curves. Note that the
solid curves depicted in Figures 14 through 23 are obtained based on the statistical model that
utilizes only the crack growth rate data, e.g., Figure 10, for estimating the model parametersa b, Q
and g, = ¢, 8s shown in Table 3.

1. Correlation with IN100 Test Results
A qualitative correlation study of the IN100 results is carried out in the following manner.

Test results of the crack growth rate for each specimen are best fitted by the hyperbolic
sine crack growth rate function proposed by Pratt & Whitney Aircraft (Reference 2),

Y = C,sinh [CyU + Cy] + C, (29)

in which Y and U are given in Equation 16, C, is a material constant, and C,, C, and C, are
constants depending on the test condition (v, R, T). Equation 29 involving four parameters is
supposed to provide a better fit to the crack growth rate data.

Given the crack growth rate data, the least squares best fit procedures to estimate values of
C,, C;and C, for each specimen were described in Reference 2 and the results of C,, Cy and C, for
each specimen in five test conditions were presented in Reference 1. Then, Equations 20 and 16
can be integrated to yield the crack size, a, as a function of load cycles, n. It has been shown that
the crack growth damage accumulation a thus reproduced by integrating Equations 29 and 16
correlates very well with the test results for each specimen (Reference 1),

In order to correlate the nonhomogeneous test results with the predictions based on the
statistical model proposed previously, homogeneous test environments have been assumed for
each test condition, as shown in Table 4. The maximur loads P, ,, given in Table 4 are chosen in
order to avoid excessive extrapolation far into the region of AK in whicli actual test results do
not exist.

By integrating Equations 16 and 29 over the homogeneous test environments, with
appropriate values of C,, C,, C, and C, for each epecimen (see Reference 1), one obtains five sets
of the homogeneous crack size, &, as a function of load cycles n. These homogeneous data sets are
referred to as the extrapolated test results, since they are not the results obtained directly from
experimental tests. The extrapolated test results for the crack size a versus load eycles n for the
five test conditions are given in Reference 1 and only the results for test conditions No. 1 and
No. 2 are depicted in Figure 24. A comparison between Figures 13 and 24 indicates that the
correlation between the theoretical model and the extrapolated test results is reasonable.
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From the extrapolated teat results for the crack size a versus the number of load cycles ,
one obtaine (1) extrapolated test data for the number of load cycles to reach any given crack size
a, by drawing a horizontal line through a,, and (2) extrapolated test data for the crack size after
any number of load cycles n, by drawing a vertical line through n,.

The distributicn function is constructed from the extrapolated test data obtained above by
arranging them in an ascending order. The ordinate of the ith data is given by i/(m+1) where m
is the total number of data points. For instance, one obtains five data points from Figure 22 by
drawing a horizontal line through a, = 1.0 inch. These five data points, for the number of cycles
to reach a crack size of a, = 1 inch, are ranked in an 1scending order where the ordinate of the
ith data point is equal to i/6 (i=1, 2, ..., ). These results are shown in Figure 14(a) by circles. In
like manner, the distributions of the extrapolated test results for the number of load cycles to
reach other crack sizes, as well as their crack exceedances after some numbers of cycies have
been constructed and shown in Figures 14 through 23 as circles. It is observed from Figures 14
through 23 that the correlation between the statistical model (solid curves) and the extrapolated
teat results (circles) is very reasonable,
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; SECTION IV

P

f ANALYSIS OF Tl 8-2-4-8 AND WASPALOY DATA h
[ %
" J
Available Ti 6-2-4-8 and Waspaloy crack propagation test results from constant amplitude
cyclic loading with various test conditions were compiled. The specimen dimensions, initial
B crack size, final crack size, and maximum load for each specimen in each test condition are K
; shown in Tables 5 and 6. The crack growth rate data for all specimens in each test condition are !
'r also pooled together for analysis purposes. The pooled data for Waspaloy and Ti 6-2-4-6 from 1
v test condition Number 1 are shown therein, respectively. :
|
- TABLE 6. SPECIMEN GEOMETRY AND MAXIMUM LOAD i
d FOR EACH TEST SPECIMEN OF T 8-2-4.6 ;
{ Test Specimen a, 6, N B w P d
| Condition No, (in) _@Gn)  (in) _ (in) _ (hips) 1
I { :
T = Room Temperature 1536 0.8138 17724 0.249 2,496 0.5450 ;
v 20 He 1580 08130 16130 02070 25007 0.7200 .
R =01 1582 06880 22080 03690 20085 10840 i
1662 0.7360 10620 04980 1.4970  0.8800 .
1643 07580 10580 04980 14990 0.8810 !
1676 03800 11780 03520 18910  0.9880 j
1877 04040 11900 03830 10987 0.9880 !
1680 0.4730 11164 03735 18956  1,0060 i
1972 01919 08025 04990 00999 11060 ;
1535 07835 17618 0.2485 24999 05080 i
2 N
T = Room Tempersture 0423 03850 07973 00970 20000  1.890 |
v = 10 cpm 0448 0.8628 17005 02520 25001 0,538 :
i R = 0.1 1484 13780 17577  0.5000 24951 1037 !
1 1885 06788 11718 05004 16920  1.182 i
: 1886 06733 11711 05006 20056 1,138 !
1862 0.5140 14487 03820 24993 1206 ]
\ 2103 0.BBTT 12588 0.3760 25003  1.301 ;
' 3 i
) T = Rocm Temperature 1744 0.0828 02261 02935 0.896  6.811 ;
' v = 10 cpm 1741 0.0768 01982 02000 0898 7157 i
$ R =00 1742 00887 02637 02070 0896 6.8l ;
! 1582 0.116 03120 02950 0897 4,273 i
4 h
T = 800°F 0358 0.587 17928  0.2750 22520  0.624 i
v =10 cpm 0358 0.6807 15878  0.2750 22556  0.625 1
R =01 0400 0.3696 08350 01250 2.0000 4,544 |
0410 0.3874  0.6907 01206 20000 4,891 i
1245 0.6453 07775  0.5010 10030  0.365 :
1881 03088 14964 05240 199590 1763 j
1883 03679 14814 05040 20045 1577 j
5 ;
T = 400°F 0418 08326 20500 02500 25000 0.3330 !
v =~ 20 He 0415 09741 08276 01260 20000 2.4500 !
R =01 0416 0.8428 20489 0.2500 2.5002  0.2600 i

1678 0.4260 09300 03440 19972 11150
1886 06128 14754 05016 19986  1.1210
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TABLE 6. SPECIMEN GEOMETRY AND MAXIMUM LOAD
FOR EACH TEST SPECIMEN OF WASPALOY

Test Specimen a, g, B w P
Condition No. (in)  (in) (in,) (in.) (hips)
!
T = 1200°F 0736 10706 17688 0432 2,502 1.621
v = 20 Hz 1464 06000 20820 0500 2,500 1.240
R = 0.06 1470 08510 17480 0491 2481 1.224
1304 10830 18670 0300 2.509 2,263
2
T = 1200°F 1004 0.0703 03328 0.301 0.988 1L.513
v = 10 cpm 1301 1.1072 1,904 0.501 2,519 1.769
R = 0,05 1013 00683 18563 0,132 2484 1,261
3
T = 800°F 1002 0.8330 17508 0.499 2,608 2.874
v = 10 epm 1003 0.0635 03047 0.303 0.997 13,316
R_= 0.05 1018 10184 18044 0208 2,606 1417

Using the hyperbolic sine crack growth rate function (Equation 28), and the lognormal
statistical model (Reference 1), we obtain the maximum likelihood estimates for C;, C,, C, and
the standard deviation o, = o,. These results are presented in Tables 7 and 8. The crack growth
rates bused on the values of C,, C,, C,and C, given in these tables, for Z = 0, are shown as solid
curves in Figures 25 and 28 (test condition Number 1),

TABLE 7. MAXIMUM LIKELIHOOD ESTIMATE OF C,, C,, C,,
STANDARD DEVIATION o, = 5, AND COEFFICIENT
OF VARIATION, V, OF da/dn FOR Ti 6-2-4-6 (HYPER-

BOLIC SINE FUNCTION)
No. of
Test Data
Condition C, (oM Cy C, oy, 14 Pointa
1 0.7 4.68 ~1,0808 —5.4878 (.0872 15.8% 269
2 0.7 45718 ~1.1088 ~5.378 01188 27.1% 179
3 07  3.0048 ~0.9651 ~5,7946 D14 27.5% 50
4 0.7 21954 ~0.9086 —5.4868 0.0861 13.0% 251
b 07 3.5301 ~1.0641 —5.7081 0.0930 21.9% 153
TABLE 8. MAXIMUM LIKELIHOOD ESTIMATE OF C,, C,,
C,, STANDARD DEVIATION o, = 7, AND COEFFI.
CIENT OF VARIATION, V, OF da/dn FOR
WASPALOY (HYPERBOLIC SINE FUNCTION)
No. ;r
Test Data
Condition C, C, C, c, o =0, v Points
1 0.6 3.5484 —1.4064 -5.0269 00783 18.2% 130
2 0.5 4.0154 —1.3604 —4.8774 00470 10.9% 50
3 0.5 4.3817 ~1,4041 —4.9847 00864 128% 67
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Crack growth rate data for each specimen are best-fitted by the hyperbolic sine function
(Equation 3), to determine the parameter values C,, C, and C,. The results of the parameter
values for each specimen are shown in Tables 9 and 10.

TABLE 9. PARAMETERS C,, C;, AND C, FOR EACH TEST
SPECIMEN OF TITANIUM WITH C, = 0.7, HYPER-
BOLIC SINE CRACK GROWTH RATE FUNCTION

e -

DTSRI Y PR ~

3 Test Type of
S Condition ~ Specimen No. €, ¢ c, R Specimen
's 1 — 1596 45502  -1.0206  -578 01  MCT
: 1580 41696 -1.2051  -51217 01  MCT
! 1682 50229 -1.3336  -46700 01  MCT
3 1682 44731  -10217  -56851 01  MCT
- 1683 47887  -10099  ~58614 01  MCT
1676 41695 -09856  -58254 01  MCT ;
E 1677 4273 -0988  ~58294 01  MCT ;
; 1680 41694 -12454 49161 01  MCT i
- 1972 87766  -1.0862  -58379 01  FRT |
;' 1635 48335 -10530 -56762 01  MCT W
' 2 — 0423 48117  -L174  -52811 01  ON k
[ 0448 44517 -10333  -56816 01  MCT y
1484 48881 -14282  -43588 01  MOT
[i 1885 2788  ~11319  ~52382 01  MCT
% 1888 40842  -0.8037 -61048 01  MCT
; 1892 48282  -10628 -B6214 01  MOT
1 2103 51135 -08827  ~-57010 01  MCT
, 8 — 1744 4568 -1.3168 -46476 00  CN
v 1782 81613 -0846 -56793 00  CN

1741 51208 -12070 -47369 00  ON

1842 47786 -14152 -43071 00  ON
. 4— 0858 21884  -08647  -55319 01  MCT
3 0859 16211 04380 -61680 01  MCT

0408 30045 ~17454  -37829 01  ON

0410 3.5887  ~1.4831 -44511 01 CN )
1245 22045  -0.8054 ~568619 0.1 McCr 3

1881 2.7011 -1.0881 —-5.1882 0.1 MCT

1883 28800 --0.9634 -54188 0.1 MCT
: g -~ 0413 3.0878  ~1.1146 ~-55747 0.1 MCT |
i 0415 3.4828  -1.2019 -5137% 0.1 CN A
L U418 3.877¢  -0.8238 -64856 0.1 MCT 1
1678 37288  -1.2228 ~62324 0.1 MCT 3
. 1886 3.8008 —1.1687 ~-53687__ 0.1 McCT

TABi.K 10. PARAMETERS C,, C,, AND C, FOR EACH TEST
SPECIMEN OF WASPALOY WITH C, = 0.5, HYPER-
BOLIC SINE CRACK GROWTH RATE FUNCTION

Test Type of

Condition  Specimen No. cy Cy c, R Specimen “

¥ 1 0738 39744 18278 ~48472 006  MCT

b 1484 34868  -14726  -48366 005  MOT

1470 44457  —1.2540  —53545 005  MOT

P 1304 38747  ~1B488  ~47752 001  MCT
e 2 1004 49000 14710  -~4.6875 005 CN ]
. 1301 37564 -1.2698  -51172 005  MCT :
L 1013 SR140 14935  -48702 0.1 MCT '
" - { 3 1002 44664  -15408 48281 006  MCT !

! 1008 49498  -1.5226 48012 0056 CN

1018 3.827 ~13911  ~52284 006 MCT
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In order to perform correlation studies, homogeneous test environments should be
assumed, since each test specimen has different geometry, initial crack size, final crack size, and
maximum load P, as shown in Tables 5 and 6. Homogeneous test environments assumed for
Waspnloy ere shown in Table 11,

TABLE 11, ASSUMED HOMOGENEOUS TEST ENVIRON-
MENTS FOR EACII TEST CONDITION FOR

WASPALOY
Test a, a; B w P Type of
Condition (in.) (in.) (in,) (in.) (kipa) Specimen
1 0.6 20 0.5 2.6 3.6 MCT
2 06 2.0 0.5 2.5 5.2 MCT
3 0.6 2.0 0.5 2.5 4.0 MCT

The distributior: of the crack growth damage accumulation, a, as a function of load cycles,
1, bused on the lognormal statistical model can be obtained using Tables 8 and 11. Then, the
distribution functions for (1) the number of load cycles to reach any specific crack size, and (2)
the crack exceedance probabilily at any given riumber of load cycles, can easily be determined
{Reforence 1), The distribution functions for the number of load cycles to reach crack sizes 0.8756
and 2.0 inches are displayed as solid curves in Figures 27(a), 28(a), and 29(a), for the three test
conditions. Likewise, the probabilities of crack exceedance at n = 50,000, 10,000 and 50,000
ovcles, for tho three test conditions, are shown as solid curves in Figures 27(b), 28(b), and 28(b).

With the aid of the best-fitted parameter values for C,, C;, and C,, given in Table 10, the
crack growth damage accumulation, a, for each individual specimen, is obtained by integrating
the crack growth rate equation and using the assumed homogerieous test environments given in
Table 11. The distribution of the number of load cycles to reach any specific erack size and the
crack exceedunce probability at any given number of lond ecycles is then established. These
extrapolated results are presented ss circles and triangles in Figures 27 through 29, The
honoyeneous test envirenment in Table 11, is assumed to avoid excessive extrapolation into the
region of AK for which test data do not exist. This may be difficult to achieve because the crack
growth rate data for each specimen do not cover the same rogion of AK. Therefore, the
oxtrapolation cannot be avoided for some specimens, This problem becomes more serious for the
Ti 6-2-4-6 data and will be discussed later,

It is obuerved from IMigures 27 through 29 that the correlation between the lognormal
statistical model and the extrapolated tost results is very reasonable for Waspaloy.

In & similar manner, homogeneous test environments are assumed for Ti 6-2-4-6, Based on
the lognormal statistical model, the distribution functions for the number of eycles to reach two
different crack sizes are shown as aolid curves in Figures 30(a) through 34(a) while the crack
exceednance curves are shown in Figures 30(b) through 34(b). The corresponding extrapolated
test results are shown in the same figures by ciroles and triangles. It is observed that except for
test condition number 5, the correlation is less than satisfactory.

O S C

C i e

Procse Soswsrorwd

SR AP S BT

s

b - Tt s mm 5

St Tieae .




e
I

| 1.0 Test Gondition 1
o | 0.9 Waspaloy
L\ a ~ 0.875 in. Prax = 3.8
1 0.8 Hyperbolic Sine Mode!
o d
E g 0.7
E g 0.6
A. b 0.5~
‘. A~
y 03~
g 0.2
o
% 0.1
. ARV AN ENEEN
2 3 4 5 6 7 8 8 10 11 12 13
- Cyoles, n ~ x 104
:_ «
:
13
R
i 10 Test Condition 1
. 0.0 Waspaloy
: Proax ™ 3.8
(X1 X O) Hyperbolic Sine Mociel
: n = 50,000 Cycles
l N4 o
= el ©
ok
4o ‘] '8 0.4~
i 0.3g—
I 1{ 0.2 L-
i 01—
: 0 | | !
£ 0.7 08 0.9 1.0 14 1.2 1.3
N Crack Size, & ~— In,
. j (b)
; :
N Figure 27. Distribution Curve and Crack Exceedance Curve for Waspaloy for Test d
Ly f Condition N»n. 1; (a) Distribution of Cycles to Reach Given Crack Size, and o
- (b) Crack Kxceedance Curve After 50,000 Cycles A

39




‘i 1.0 —

: 0.9 |- Tost Condition 2
0.8 |~ i #

g o7 - Hyperbolic Sine Model
5* 2 .6l a = 0875 a = 20

: i 05 |-

I ol

£ 03

‘. 02 A

0.1 f—

4 | | | L4 1 14

by 5 7 9 11 13 16 17 19 21 23 25

i Cyoles, n — x 10°
(a) FD 251048

I o
’ 1.0
: 09
4 Test Condition 2
: 0.8 - Waspaloy
] Poax = 5.2
; 0.7 ¢ Hyperbolic Sine Model
I n = 10,000 Cycles
rvi 0.6 g~
8
v g 06 -
v % o4l
: : 03 [~

0.2~

0.1p=

o | ] 1 |

0.60 0.6 0.70 0,78 0.80 0.85
- Cruox Size, & — In.
| (b) FD 281948

Figure 28. Distribution Curve and Crack Exceedance Curve for Waspaloy for Test
Condition No. 2; (a) Distribution of Cycles to Reach a Given Crack Size,
and (b) Crack Exoeedance Curve After 10,000 Cycles

40




1.0‘-— Teat Condition 3

Waspaloy
08— Proay = 40
0.8 Hyperbolic Sine Model
e

oshp— * - 0.875 In.
0.5¢~

0.4
0.3

Probability Distribution

0.2
0.1

o TR N

|
|
i
1

:

0 -
L 2345678910111213
! % Cycles, 0 — X 104
l' (n) " 9'1'“
B 10
\. 0‘9 brens
- Test Condition 3
s 0.8 Waspaioy
| PW - 4.0
: 07— Hyperbolic Sine Model
Py = n = 50,000 Cycles
|- g 0.6 b~
1\5’ 3 0'4 ot
1 o
'4. ‘ 0zt
. 01}~
L | |
L 0.85 0.75 0.85 0.85

'4 Crack Blze, v — In.

l‘ (b) FO 2856108

Figure 28, Distribution Curve and Crack Exceedance Curve for Waspaloy for Teat
y Condition No. 3; (a) Distribution of Cyeles to Reach Given Crack Size, and
g (k) Crack Exceedance Curve After 50,000 Cycles




Sove: mreeremy—vre

PRSP A AT~ sy

10—
09} Ow A
24.2x 104 27.2x%104
0.8 }— :
§ 0.7~ a = 1.70 in. a
F -8 =
B 081" 6725 In. :
: 8 g5 L— 4
: £ - Test Condition 1 1
g 0 Titanium 1
' @ 0.3~ Pmax = 1.4 |
. a Hyperbolic Slne Model ;
! 0.2 - Original Data ]
0.1 i‘
) I [ Y T T I

? E 8 7 8 0 10 11 12 18 14 15 16 17 18
' Cycles, n — X 104
(.) FD 288030

e

R

1.0 -

0.9 |~ O

08 |- |
‘ 0.7 1
!
0.6 |—
i
? g 0b - ,4
f 5 04— Test Condition 1 ;
I ) Titanium !

03 Poa 14

Hyperholic Sine Mcdel
& 0.2} n = 30,000 Cycles
s Original Data
! 0.1 :
" 0 | | 1 ]
3 040 042 044 046 048 050  0.62
‘ Crack Size, a — In.
(b’ FD 280008

Figure 30. Distribution Curve and Crack Exceedance Curve for Titanium for Test
Condition No. 1, Using the Hyperbolic Sine Model; (a) Distribution of
Cycles to Reach Given Crack Size, and (b) Crack Exceedance Curve After
30,000 Cycles




Probabliity of Crack Excesdance

' ~ Figure 31.

Probability Distribution

1.0
0.9
0.8
0.7
0.6
0.3
0.4
0.3
0.2
0.1

’-—
a=
=  0.725 in.
a = 170 in,
— Test Condition 2
Titanium
[ Pmax = 2.4
S N Hyperbolic Sina Model
| T T

1 2 3 4 b5 6 7 8 9 10
Cycles, n - X 10¢
(8)

FD 2588029

1.0
0.
0.8
0.7 Test Condition 2
Titankum
98— Prax = 2.4
‘ Hyperbolic Sine Mode)
05— O n = 20,000 Cycles
041
0.3 +—
0.2
0.1}~ ®
0 | | | | | |
045 0.50 0.565 0.60 0.65 0.70 0.75 0.80

Creck Size, & ~ in.
(b)

FD 285007

Distribution Curve and Crac!: Exceedance Curve for Titanium for Test
Condition No. 2, Using the Hyperbolic Sine Model; (a) Distribution of
Cycles to Reach (fiven Crack Size, and (b) Crack E:.ceedance Curve After
20,000 Cycles

DA 1 oy P47 L A O - i s ~rvan

B B x e it A Sl 7, i 2

fogn w23

-




1.0

00—
B __ 0.8 b~
' 'l“ . 07l 8=0181n
- g 06 |—
b, v
. '.“ g 0‘5 S
" !"‘ .. g 0.4 -
o 03— Teat Condition 3
B Titenlum
- 02— Prax = 7.933
j o1 b— Hyperbolic Sine Modsl
, |
5 10 16 20 25
Cycles, n — X 10°
[
B a2a)
10—
g
Test Conditions 3
3 oe—- O Titanium
3 Pra ™ 7.033
Hyperbolic Sina Model
‘ é 06 - o N = 5,000 Cycles
‘ [ s 0.4 }—
R
3 g 02—
! 0 l
0 10 12 14 1€ 18 20 :
Crack Size, m - In. X 102 J
(b)
Figure 32. Distribution Curve and Crack Exceedance Curve for Titanium for Test N
Condition No. 8, Using the Hyperbolic Sine Model; (a) Distribution of 3
Cycles to Reach Given Crack Size, and (b) Crack Exceedance Curve After B
§,000 Cycles 3
o
: ﬁ
4

' . R U T L T A SR yCLY Er T S




0.9

o8

207l a = 0726 In.

0.6~ Test Condition 4 a= 17 In.
[ Titanlum

051 Py = 4.64

0.4} Hyperbolic Sine Model

03

Probability Distribution

02
0.1} oA
0 | 1 I
0 2 4 ] 8 10 12

(a) = Cycles, n -~ X 10?

(a)

1.0
9 r Test Condition &
0. F" Titanium
0.8 |— Proae = 4.64
* Hyperbolic Sine Model
0‘7 b N - b.00° cyC'”
oosp—
E 0.5 p—
° 04—
I 02f—
6.1 f— Q)
NI |
0.6 0.6 0.7 0.8

Crack Size, a - In.

(b}

. Figure 38, Distributson of Cycles to Reach Given Crack Size for Titanium for Test

i Condition No. 4, Using the Hyperbolic Sine Model; (a) Diatribution of
Cycles to Reuchr Given Crack Size, and (b) Crack HExccedance Curve After
8,000 Cyclos




S

TN N o e Y e T

SR T, e

1.0

—

vo k- _
0.8 b 0725 n.
§ o7 -
3 a = 1,700 In.
§ 0.8 f—
0.6 —
% Test Condition &
2 0.4 1~ Titanium
2 Pmax = 1,115
« 03 Hyperbolic Sine Model
02}~
0.1 »
oL - | | J
10 16 20 25 30 36 40 456
Cycles, n ~ X 104
{a) FD 285014
10
Test Condition &
0.9 - Titanium _
0) P = 1116
0.8 p~ Hyperbolic Sine Model
0.7 r A = 100,000 Cycles
0.6~
¥ o)
] 0.4 -
£
3 r—
ol
01
| | i
0.44 0.48 0.52 0.58 0.30 0.64

Crack Size, a ~ In.
{b)

FD 288012

Figure 34. Distribution Curve and Crack Exceedance Curve for Titanium for Test
Condition No. §, Using the Hyperbolic Sine Model; (a) Distribution of
Cycles to Reach Given Crack Size, and (b) Crack Exveedance Curve After
100,000 Cycles




LR " S

A careful examination of the data indicates that the ext.apolation for some specimens is
excessive, due to the following reasons: (1) Tlie crack growth rate data for each specimen cover
different ranges of AK, and therefore, it is impossible to assume a homogeneocus test
environment without excessive extrepolations for some specimens, and (2) The hyperbolic sine
function has two asymptotes, and the extrapolation is very sensitive in the region of AK where
an asymptote occurs. In test condition Number 1, for instance, the crack growth rate data of one
specimen (Number 7AN1592) covers only a very small range of AK. Consequently, the best-
fitted hyperbolic sine function results when the left asymptote falls into the region of
extrapolation as shown in Figure 36. 'Thavefore, the propagation life is too long as indicated in
Figure 30 by numerical values. Consequently, it seems reasonable to censor this specimen. With
such a specimen being censored, the results are shown in Figures 36(a) and (b). It is observed
that the correlation is very reasonable. Similar situations exist for test conditions Numbers 2
through 4.

The Paris crack growth model was also used to analyze statistically the Waspaloy and
Titanium data.

From the pooled crack growth rate data for each teat condition, the method of maximum
likelihood was employed to estimate the parameters b and log Q as well as the standard
deviation 0, =0, The results are presented in Tables 13 and 14, respectively, for Waspaloy and
Titanium. Furthermore, the crack growth rate data for each test apecimen were best-fitted by
the Paris function to determine the corresponding b and log Q values. The results for each
specimen are shown in Tables 15 and 186, respectively.

Following the same procedures described in Section III and using the assumed homoge-
neous test environmenta given in Tables 11 and 12, the correlation between the statistical model
and the extrapolated test results was obtained, The correlation results for the distribution of
random number of load cycles to reach any given crack size and the crack exceedance curve are
depicted in Figures 37 through 44. It is observed that the correlation is very good for Waspaloy
data sets whereas a considerable improvement in correlation has been achieved for Titanium
data sets.

TABLE 12. ASSUMED HOMOGENEOUS TEST ENVIRON-
MENTS FOR EACH TEST CONDITION FOR

TITANIUM
i Test a, a B w Prox Type of
Condition (in.) (in) (in) (in.) kips Specimen
1 04 1.7 0.3630 1.8987 1.40 MCT
2 0.4 w 0.3800  2.4943 240 MCT
3 0.08 04 0.3000 1.0000 7.80 CN
4 0.4 17 0.5000  2,0000 4.64 MCT
5 0.4 17 0.3440  1.9972 1,12 MCT
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TABLE 13.

MAXIMUM LIKELIHOOD
ESTIMATE OF b, LOG Q
AND STANDARD DEVIA-
TION o, = o, FOR WASPA-
LOY (PARIS FUNCTION)

Test Condition ] log Q o, = o,

1
2
3

21841 80079  0.0826
21420  -7.8101  0.0478
24193  -8.5840  0.0878

TABLE 14,

MAXIMUM LIKELIHOOD
ESTIMATE OF b, LOG Q
AND STANDARD DEVIA-
TION o, = o, FOR TITANI-
UM (PARIS FUNCTION)

Test Condition b log Q@ o =0,

N e GO B3

3.6082 —04168 00797
3.5240 -5.2847 01180
28891  -84737 01273
21210  =7.5039  0.0026
3.1004 -9.0305 00767

'TARLE 15.

PARAMETERS b AND LOG Q
FOR EACH TEST SPECIMEN OF
WASPALOY, (PARIS FUNCTION)

Test Condition 1

. Specimen_No. b oy @
0738 2.2088 —B8.20432
1484 2.2007 -8,2108
1470 25171 ~8.4611
1304 2.0887 ~7.9079

Specimen No.

1004
1301
1018

Test Condition 2

[ log Q
25780 -8.4702
21821 -+7,8626
2.1802 «=7,7500

Tast Condition 3

Specimen No. 2 log Q
1002 24759 —8,6885
1003 2.8554 -9,2361
1018 2.1078 —8.2600
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TABLE 18. PARAMETERS b AND LOG Q
s FOR EACH TEST SPECIMEN OF
: . TITANIUM (PARIS FUNCTION)
;{z ; Test Condition 1
f _ Specimen No, b log @
! 1535 8.8179 -9,7058
L, 1538 3.5989 -9.4006
S 1580 3.5938 ~9,4074
o 1582 40385 ~10,0188
' 1662 3.8577 ~0.4280
1663 3.8253 ~9.6413
T 1676 3.5012 -9.2787
) 1677 3.4378 -9.4230
S 1680 8.7600 -9,5362
b 1072 2.6092 ~8.7004
' Test Condition 2
Specimen No. b log Q
0423 3.9789 -9.2429
. 0448 4.9189 -9,1072
: 1484 5.0874 ~11.2012
» 1885 4.0201 ~8,7903
1886 8.4508 -9.2101
, 1802 3.6220 ~0,4588
: 2108 4.3748 ~10.0228
! Test Condition 3
3 Specimen No, [ log Q
] 1744 45104 ~10.8876
1532 3.0072 ~B.6924
o 1741 8.0922 ~0.9043
1742 4.8892 ~11,0634
‘, Teat Condition 4
Specimen No. b log Q
0358 19848 ~7.20%4
0389 10519 ~17,3891
0409 2.7940 ~8,5598
0410 24115 —7.9850
1248 17779 ~7.1221
1881 2,9705 ~7.8082
1889 2,281 -7.6221
Test_Conditicn &

Specimon No. ﬁ log Q
0413 32689 -9.2172
0415 2.63856 —8.5358
0418 2.95380 ~8.0137
1678 2.0388 —8,8084
1883 2.7503 —~8,6453
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SECTION V

STATISTICAL ANALYSIS OF A HOMOGENEOUS DATA SET

f A homogeneous crack propagation data set for 2024-T3 aluminum center-cracked
specimens under constant amplitude cyclic loading generated in References 3 and 4 is analyzed.

The lognormal statistical model, developed under the present program, and an advanced model
i currently being developed under another program, have been used. The results of such analyses
3 reveai the importance of both the selection of the crack growth rate function and the data
‘ analysis technique used for deriving the crack growth rate data from the experimentel

measurements,

Sixty-four sample functions for the crack growth damage accumulation, a, versus the
number of load cycles, n, are shown in Figure 45. The initial half-crack length is 9 mm and the
final half-crack length is 49.8 mm. The crack growth rate data, da/dn, versus the stress intensity
range, AK, are derived from Figure 45 using the seven-point polynomial method and the secant
method. Based on the hyperboalic sine crack growth rate function, (Equation 1), the method of
maximum likelihood is employed to estimate the parameters C, C;, C, and the standard
deviation o, = o, (see Reference 1). The results are shown in Table 17. It is ohserved from Table
17 that the statistical dispersion of the crack growth rate, da/dn, is smaller when the seven-point

polynomial method is applied.

R g

49.8

41.5

33.2

249

Crack Size, a - mm

16.6

a3r

] L ]
0 8 18 24 a2 40

k Cycles, n - X 10

Figure 45. Homogeneous Data Set of Virkler, et al. with P,,, = 23.35 kn and R = 0.2

Using the lognormal statistical model and integrating the crack growth rate equation
(Equation 1), for different y percentiles, one obtains the distribution of the half-crack length as
a function of load cycles n. The results ave shown in Figure 46, in which the seven-point
polynomial method has been used. Note (nat the stress intensity range AK for the CCT
specimen is given by

AP ra
AK =
-BW-\/TBGC (ra/2W) (30)
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TABLE 17. MAXIMUM LIKELIHOOD ESTIMATE OF C,, C,, C,,
STANDARD DEVIATION o, = ¢, AND COEFFICIENT OF
VARIATION, V, OF da/dn; Cf 0.5

k
i !
! Analysis i
i Tecknique c, ey c, 0=, 14 ]

, 7-Point 3.4477 -1.3902 -4.5348 0.08235 19,18% E
é : Polynomial .

i b
o Secant ]
b method 5.0148 -1,1336 -5,0738 0.09559 22,35% ﬁ
g = |
T 40.6 — 5% 10% 26% 50% 76% 90% 95%
45
b : 40— Y

, | 85f—

L]
g 30

o g 25—
g ol
|
o
o 15—

I N TN S O N

0 4 [ 12 16 20 24 28 32 36 40
Cycles, n — x 104 FD 285031

Figure 46. Lognormal Statistical Model Prediction of Virkler, et al. Data Set

A comparison between Figures 46 and 46 indicatea thal the lognormal statistical model
correlates wel) with the tost results for the 50% crack propagation life. However, the statistical
dispersion of the crack growth damage accumulation based on the model is larger than the
experimental test results.

e G

The Aistribution functions for the number of cycles to reach half-orack lengths of 21 mm
and 49.8 mm are presented in Figures 47 and 48, respectively. In these figures, the solid curve
and the dashed curve represent the resulta based on the lognormal statistical model. The former
is obteined using the 7-point polynomial method, whereas the latter is obtained using the secant
mothod. The experimental test results, Figure 45, are shown by circles in Figures 47 and 48,

b i
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Figure 47, Distribution Function of Number of Cycles to Reach 21mm Half-Crack
Length

R

The probabilities of orack exceedance at n = 150,000 cycles are shown in Figure 49 as a
solid curve, a dashed curve, and circles which have the same meaning as those in Figures 47 and
48,

As observed from Figures 47 through 49, the correlation between the lognormal statistical
model and the test results is very good for the 50% crack propagation life. However, the model
predicts a larger statistical dispersion for crack growth damage accumulation than the actual
test data which results in a conservative prediction for the crack propagation life. Furthermore,
the seven-point polynomial method appears to be superior to the socant method.

T T

The observation that the lognormal statistical model results in a larger atatistical
dispersion for the crack growth damage accumulaiion was expected as described in Reference 1.
This stems from the assumption that the crack growth rate is completely correlated and hence Z
is a random variable, At another extreme, whea the crack growth rate is assumed to be
completely uncorrelated at any two different values of log AK, one obtains a v/hite noise proceas,
‘The white noise process model results in the smalleat statistical dispersion for the orack
propagation life (Reference 1) as evidenced by the results presented in References 3 and 4.
However, for the white ncise model, the prediction for the crack propagation life is

unconservative, _ ‘“1
!
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Figure 48. Distribution Function of Number of Cycles to Reach 49.8mm Half-Crack
Length

The actual test results in Figure 45 indicate a definite correlation for the crack growth rate
at different values of log AK. Therefore, a statistical model taking into account such a
correlation has been explored in Section VI, which is referred to as the advanced statistical
model. A complete development for the analytical solution of such a model has been
accomplished under the sponsorship of another program (Reference 28). It can be shown that
the statistical dispersion of the crack propagation life decreases as the correlation for the crack
growth rate reduces.

Based on the advanced model with the correlation parameter A = 40,000 (see Section VI),
the distribution functions for the number of cycles to reach haif-crack lengths 21 mm and
49,8 mm are indicated by dotted and dash.dot curves in Figures 47 and 48, The dotted curve
reprosents the results of the advanced model using tho seven-point polynomial method, while
the dash-dot curve denoies the results using the secant method. Similarly, the crack exceedance
curve at n = 150,000 cycles is shown in Figure 49 by dotted curve and dash-dot curve having the
same meaning as those in Figures 47 and 48.

As indicated from Figures 47 through 49, the advanced model with the method of seven-
point polynomial correlates well with the experimental test data (circles), For the advanced
model, the 7-point polynomial method is definitely superior to the secant method.
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Figure 49, Crack Exceedance Curves at 150,000 Cycles

In conclusion, the Paris crack growth rate function, Equation 13, has been used in
conjunction with both the lognormal and advanced statistical models. The correlation between
the test data and the prediction based on the Paris crack growth rate funtion is extremely poor
even for the 50% crack propagation life. Therefore, it is not worthwhile to present the results.

The results of analyses for the homogeneous data set presented above indicate two salient
features associated with the prediction of fatigue crack propagation. For a particular type of
gpecimen under a particulay type of fatigue loading, one should select a crack growth rate
function which can best describo the crack growth rate behavior. For the homogeneous data set
analyzed, the hyperbolic sine function fit the crack growth rate data very well, whereas the Paris
function did not. Using the method of maximum likelihood, the goodness-of-fit can be judged
from the standard deviation o, = g,. A crack growth rate function has a better fit if the
corresponding standard deviation o, is smaller.

Data for the crack size, &, versus the number of load cyci. s, n, are measured directly from
experiments. Then, the crack growth rate data are derived from a versus n meas.rements.
Various analysis techniques for obtaining the crack growth rate data have been proposcd in the
literature, such as tho secant method, the method of eeven-point polynomial, etc. Unfortunately,
the accuracy for the statistical prediction of fatigue crack propagation depends on the data
reduction methodology employed. Further research is needed to identify a best techinique for
the reduction of the crack growth rate data as well ay the measurements of a versus n.
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SECTION VI

ADVANCED STATISTICAL MODEL FOR FATIGUE CRACI{ GROWTH

Several mathematical models have been proposed for the prediction of crack growth
damago accumulation for structures under dynemic loads based on the principles of fracture
mechanics (References 6 and 7), These models have the general form of

48— Q(K,AK.8,0,R)

(1)

where a(t) = crack size at time t, Q = a non-negative function, K = stress intensity factor, AK =
stress intensity range, s = stress amplitude, R = stress ratio, For instance, the well-known Paris
model is given by

dﬂ_ - b
5 - QaK) .

AK = «a{a) As \/xa (33)

where As = stress range, a( ) = a function depending on the spsoimen and crack geometries.
However, even in a well-controlled laboratory environment, results obtained from crack growth
experiments under either a constant-amplitude cyclic loading or a given spectrum loading
usually exhibit considerable statistical variability. This ie illustrated in Figure 50, whick shows
the actual crack growth records of some fastenier hole specimens subjected to the excitation of a
specific load spectrum in a laboratory. I¢ is, therefore, not surprising to find that statistical
analyses have been applied quite frequently to such problems in recent years (References 6
through 22).

If we restrict our attention to a laboratory setting so that the loading time-variation is

deterministic, then the mathematical model, Equation (1), can be “randomized” as follows:
di -

a9 - Q(K,AK,B,B,R) X(t) (34)

where the additional factor X (t) is a non-negative random process, and a{t) is a random process
representing the crack length at time t. It is of interest to note that Virkler, Hillberry and Goel
(References 3 and 4) have undertaken simulation studies of crack propagation which amount to
assuming X.(t) in Equation (34) to be totally uncorrelated at any two different times. At the
other extreme, Yang (References 1, 22, 17) has replaced the random process X(t) in Equation
(34) with a random variable, which is equivalent to the case where X(t) is totally correlated at all
times. It was pointed out in Reference 1 that a totaily uncorrelated X(t) would lead to the
smallest statistical diapersion and a totally correlated X(t) to the greatest statistical dispersion
for the time at which a given crack size is reached. A niore realistic modeling of tatigue crack
growth should lie romewhere between the two extremes. Therefore, the ability to account for an
arbitrary correlation in X(t) is a major consideration in the present section.
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/ From the standpoint of fatigue design and schedule maintenance (References 11, 14, 15), 5
two types of statistical information are of interest: the distribution of the random orack size at 1
any given time, and the distribution of the random time to reach a given crack eize. As shown in ;
Reference 1, these two problems are interrelated. Attention will be focused on the statistical 1
3 properties of the latter problem. In particulat, analytical solutions will be given for the
statistical moments of the random time to reach any crack size, given the knowledge of an initial
gize. A procedure to estimate the parameters in a power-law mathematical model also will be i
presented, using the fractographical results (Reference 23) of some 7476-T7361 aluminum ¥
fastener hole specimens subjected to the excitation of a bomber load spectrum.

1. Model for X(t)

We shall model X(t) as a random pulse train (see Reference 24), i.e.,

X = 2 Zywityr)
:l kWAB T (35') '
b‘i where N(t) = a homogeneous Poisson counting process, giving the total number of pulses that .
arrive within the time interval (—oo, t); 7, = the arrival time of the kth pulse; Z, = the random i.
amplitude of the kth pulse, and ‘ '
'
s 1, 0 <tr < A '
(36)

wit,r) = wltr) =
l 0, otherwise .
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We further assume that Z, for different k are irndepencient, identically distributed random
variables, with a common probability distribution Z,

A typical sample function of X(t) is shown in Figure 61.

A2 fr
2
o e
-.iAi‘.

Random Process, X{(t)

Time, t
K> 255037

Figure 61. Typical Sample Function of Random Process X(t)

The statistical properties of X(t) can be described by its cumulant (or semi-invariant)
functions. The mth cumulant function in given by:

KX (£, X(t)] = BIZEAS™ " w(t, — 7)..wity = 7)dr @

in which E[ ) denotes an ensemble average, A is the average arrival rate of the Poisgon process,
and min{ ) indicates the smallest of the parenthesized quantities. In particular, the first

cumulant is the mean function, and the second cumulant is the covariance function. These are
found to be:

p o= B[X(t)] = B[Z]\ f_‘ w(t — r)dr

=~ B(ZI\ [T du = E{Z)A
[ZI\ [ w(u)du {Z] 38)
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and

Cov[X(ty), X(t))] = E[z’nf:‘ w(t, — T)w(ty — r)dr

= E[Z\ [T w(u)w(t, ~ t; + u)du

(280~ b - tlfa), by — 4 < &
o ba = tiza (39)
in which g = 4 E [Z}]MA.
2. Approximation of & (t) by a Markov Rahdom Proceso
We now re-write Equation (34) as follows:
dg -
g0 — Q@ (p + Y#) (40)

where the dependence of Q on K, AK, s and R has been suppressed for simplicity. Clearly, Y(t)
is a random process with a zero mean and the correlation function of Y(t) is the same as the
covariance function of X(t); namely,

28(1~ H/4), W< A
Ryy(r) = BIY(t) Y(t+7)] = (41)

0, otherwise

A gketch of this correlation function is shown in Figure 52, If the correlation time of Y(t) is short
compeared with the characteristic time of @ (i), then & (t) is close to a diffusive Markov process
{Reforcnoe 26) which is governed by an Ito's stochastic differontial equation (Referenco 26):

dg = |, + o(7,
a m(a,t)dt o (8,t)dB(t) 42)

where m is called the drift coefficient, « the diffusion coefficient, and B{t) is a unit Brownian
motion process (also called the Wiener’s process), which has the property that dB(t,) and dB(t,)
are independent for ¢, # t,,

Tho correlation time of Y(t) may be defined us follows:
fwT‘va(T)l dr

Ter = I TRayy(n)dr (43)

Substitution of Equation (41) into Equation (43) resultain 7, = A/3.
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Strictly speaking, the & (t) process in Equation (42) i¢ an approximation of that in
Equation (40), and they could be represented more clearly by two different symbols; however,
the sume symbol will he used in thia report tor both provesses as long us no confusion will result.

Stratonovich (Reference 26) has given the required formulas to compute the drift and
diffusion coefficients from the original physical equation when the Markov approximatiion is
justified. In the case of Equation (40)

mo=Qut 1, Q-LEYWYE + s
Q + Q = BA Q(u + pA u) (44)

A o=2 L QEHYMLYE + jdr = 2Q%84
0 (46)

where 7, > A. These equations imply that @ and JQ/da vary slowly within the integration
interval to justify their being taken outside the integrals. Thus, the integrals account basically
for the contribution towards the drift and diffusion due to the correlation between the past and
the present “excitations” Y(t). This contribution is lumped at the present, when m and « are
used in Equation (42)., The replacement of lquation (40) by Equation (42) amounts to
substituting Y(t) by a white noise. Theoretically, the substitution introduces a small error
associated with a small probability for da to become negative. This error ia negligible so long as
the drift dominates the diffusion, which should be verified in each pructical case, Stratonovich’s
formulas are applicable to other types of correlation functions for Y(t) as long as Q and dQ/da
vary slowly within an interval of » where such a correlation is not negligibly small. In this case,
the lower limit of integration can even be extonded to —oo. Btratonovich’s method is known as
the stochastic averaging method, originally proposed on a physical ground, but later proved
rigorously by Khasminskii (Reference 27) and pgiven a rigorous mathematical interpretation.
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The transition probability density q, (a, t | 8y, ty) of the Markov process @ (t) is a
conditional probability density which describes the distribution of @ (t) under the condition that
the initial crack size is & (t;) = ay at an earlier time t,. It is governed by the following Fokker-

Planck equation {Reference 26):

Sy e+ s 0l - — @paw) = 0

(48)
_ or by the adjoint of Eyuation (46):
E A A I AN o e
Ln t,o + [Q("‘ + ﬁA an)] a, + QBA aﬁ q. 0 (47)
1
subject to the condition,
: Ja,ty ] agty) = S(a—a
E~ Glaty] Bt = d(a—ay) “8)

In Equation (46) Q is treated as a function of “a"” which is a sample value of the crack size & (t),
whereas in Equation (47) it is treated as a funetion of ag These equations are also known as the
Kolmogorov's forward and backward equations, respectively.
3. Time to Reach a Given Crack Size

We now focus our attention on the random time when the crack size & (t) reachos a specific

value a, This event may be considered as the passage for the first time across an absorbing
boundary. Introduce g(a, t !4, ty) such that

g(a, t|ag t)da = Probla = B(1) =u + dala, < 8(r) <o, by <7 < t),

i =a<uy,
‘ o (49)

Although g is similar to 4a,, it is not a probability density since its integration on a from ayto a,
F is generally smaller than one. In fact, g describes only the sample functions which do not reach
the absorbing houndary a, before time t. However, g also satisfies the Kolmogorov backward
equation, Bquation (47).

3 The integration of g yields

G(t) = [ g, t]ogty) da

= Prob survival in (t,t) |@(t,) = a,

(650)
s Here the dependence of G on agand t, has been suppressed. The G(t) function also satisfies the
= Kolmogorov backward equation, namely,
l G _ﬁ_ G 9 2
— + - — T =
, T Q(u + BA a ) o + QA o G 0 ®1)

om0 ¥ |
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subject to the following conditions:

G(ty) = 1 )

G(x) = 0 (53)

Condition (63) indicatea that sooner or later fatigue failure will occur. Letting r = t — t,, we
obtain

_ 3G " 4Q ) 8G_ 50 90 0 -
i +Q(;.+ﬁAaao)aao +Qpadse - o 0

Now C(t)) — G(t) = 1 — G(t) is the probability that first passage (reaching the crack size a,)
occurs prior to t. This is the distribution function of the random first passage time T; i.e,,

Fulr) = 1 — Gty + 7)

(66)
The probability density of T follows fror1 a differentiation of Equation (55):
Por) = — 5 Glto + 1) )
The average first passage time is
E[T, = - [+ %?—dr = [ Gty + 7)dr &)

In obtaining the second part of Equation (67) use has been made of the condition (53).

Integrating Equation (54) and using Fiquations (66) and (57), we obtain an equation for the
average first passage time:

2
1+ Q(u+ mg%)a‘i—om'r] + Q’ﬂAEdEE[T] -0 8

The above second order equation reguires two boundary conditions, one of which is clear'y

E[T] =~ 0, ifa, = a,

(59)
We shall assume that another condition is
L gy =0, ifa, = 0
8, (60)

Equations for higher order mements ¢an also be derived from Equatior: (54). Note that

BT = - [3"5-dr = nf5 ~'G(t, + 7)dr )

m




Multiplying Equation (54) by r®and integrating on r, we obtain

2
(n+DET) + Q (4 + ﬁA% ) ﬁ;ElT" o+ Q’ﬂAE";g—E[T" =

(62)
subject to the conditions:
Ei't® * !} = 0, ifa, = a
[ ] 0 ¢ (63}
L gty =0,  ifag=0
8n (64)

It is clear that Equation (64) which incldes Equation (60) s a special case implies that a, = C is
a reflective boundary. Equation {(62) can be used recursively to obtain higher moments from the
lower order moments. Equation (62) reduces to Equation (568) when n = 0,

Note that Equation (62) is first order in dE[T"*']/da, which can be solved readily. Let Q =
Q,f(a,) where Q, has the unit of length/time and f(.) is a dimensionless function. We obtain

de
_J%FE[TH o —}-—exp( - —ﬁ—f—&i}.!,

(66)
where
- n '*'1 L) ™ E dao *
do = @ : Y EIT Jd[exp(ﬁA J Q )] (66) :
‘; in which the common practice of using the same symbol for the integration variable and limit of ;
'} integration has been adopted for convenience. This solution satisfies condition (64). Equation
(65) implies that ¢/da, E[T®*!] is nonpositive or E{T"*!] is non-increasing when the initial crack 1
size a,is increased, which is physically reasonable. i
The (n+1)th moment of T follows from integration of Equation (65): 1
i
 _d
[ LR T - — 'e a+ 1
E[T | flo da, E[T 1da, ©7) E
1
which satisfies condition (63).
1
4. Power-Law Crack Propagation
We now consider a special form for the @ function which has been proposed by several !

L ! authors (References 13 through 16):

- b
Q Qo (E/a,) (68)
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. aid in the case of backward equations, we have Q = Q(a,/4,). In this case, the integration in
' Equations (66) and (67) can be carried out in closed form. Specifically 4
- £ ‘ : ( ao ul - b ‘{
- o (=), b1 |
da, <
'( a .

*“fnu b =1

X k QT (69)
4 E
: where u = a/a.. To compute E[T], we require J;. From Equation (68) und with n = 0, :
( |
drlew (i) - ma-w], b ‘2
, 3o = :
| . N 1 h 4
u’, b =1 .
'l here k = —zrn— and H is the Heaviside function,
) where k = g7~ and Hi eaviside function, i.e., :
H(l-b) = 1, b <1 4
0 b>1 (1) ”

-\‘, Equations (69) and (70) are substituted into the expression for dE[T]/da, which is then i
: integrated to obtain E[T; the results are '\

o {mie @Y + Ha-b) () [exe( - 155)

E[T] = { -~ exp( - Té'b_“] —b)]}’ b # 1 72) j}

!

_ 8 !

qou" nu, b I | i

To compute E[T?] we require ;

- 2 da, 3
| Jy = qu-f?ElTld[“P(-g‘%-f—Q—)] - |
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Substituting Equation (72) into Equation (73}, we obtain

Fa - Ity - e =) Lo (g

+ Ha-wffexp( - 25 ) [exp (25 vt -2) - 1]

1 -y 1
=5 W'+ 1) 'k‘" b1 (14)
Qi 1 |
—7—-—.1, - v (4 ~ nu), b = 1 -

In obtaining Equation (75), we have used the formula

L ' 1 dv
Jounudu = — [lu'duf <~

- ~2_ a1 _
(a+1) " *x ((a+1)2n x—1] 76)

The second part of Equation (76) follows from changing the order of integration.

Substitute Equations (74) and (75), respectively, into the expression for dE[T%]/da, and
integrate’

Q2 T E[T?) = Ti"B‘(TéB‘ + ’]lr) (1=-u' "% - "-——--—-—2(1]_'1)), (1 —yit - )
+ Ba-b) {4 o (- ) [ + ml—‘srw—u"'v]
= o (- iy =) [ygrmgr avet =y + f5 + Jrexe (F)],
b1
(77)
Q E[T]—Qnu(lﬂnu—l) b = 1
2a 2 i */ (78)
In obtaining Equation (78) we have used the formula:
1 - 1. 1 \2
f 20 u du j du [} .dv 5 (2n x) 79)

The second part of Equation (79) follows from an interchange of the order of integration.
8. Estimation of Model Parameters

The estimation of the parameturs of a mathematical model will be illustrated by use of two
examples. Refer again to Figure 50 which shows the crack propagation time-histories of some
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specimens selected from the fractographical data of 7475-T7351 aluminum fastenier holes
available in Reference 23. The data set is identified as WPB, indicating that the specimens were
drilled with Winslow Spuacematric machines (W), with & proper drilling technique (P), and
subjected to a given B-1 bomber load spectrum (B). The data set has been censored to include
only those specimens having fatigue crack growth through the crack length interval from 0,004
inch to 0.04 inch (corner crack). This censoring procedure is necessary in order to normalize the
data set to zero life at 0.004 inch, thus obtaining a homogeneous crack growth data base. The
resulting data set consiats of 18 specimens. Within a small crack size range, the power-law
propagation, Equation (63), was shown to be valid {References 13 through 17).

The y:arameters of our mathematical model, specialized to a power-law crack propagation
that fits the hehavior of the above WPB specimens, have been estimated using the experimental
data. We began by taking logarithms on the two sides of Equation (68), with Q = Qo(a/ad)" to
yield

1og%%L ~ bloga(t) + log(Qy/a") + log X(t)

(80)
Variations of log d @ /dt versus log & were plotted for the 16 specimens in the WPB data set as
shown in Figure 63, Implicit in the mathematical model is the assumption that all points would
fall along & single straight line if the random element log X(t) were not present. Since X(t) has
been assumed to be a stationary random process, the mean and the standard deviation of log
X(t) are constants. A linear regression analysis was then carried out to estimate the slope, the
intercept, and the standard deviation of the random element log X.(t). The slope is equal to b,
and the intercept is log (Qo/8”).
The results obtained from the 16 specimens are

b = 092971,

Qo/al = 1,1051 X 10,

The linear regression analysis implies that each point in Figure 53 has been treated as an
independont sampling of a Gaussian random variable, Thus, estimates of the mean and variance
of X(t) itself can be computed from those of log X (t), using the log-normal to normal conversion
formulas; namely,

Bx ™ exp (’%‘[ﬂ'mxmgn 10]{') B (81)

o = u?;{oxp [1gx@in 10]* - 1} - 28 (82)
Application of Equations (81) and (82) resulted in

g = 1,0206, £ = 0.021643
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log (da/dt)

Figure 53. Regression Analysis for the Hstimation of Model Porameters for WPB
Fastener Holes

The rationale behind these conversion rules is the use of linear regression to obtain the mean
and standard deviation for log X(t). It does not necessarily require that X(t) must be log-
normal. In fact, when the crack size H(t) is treated as a diffusive Markov process in an
approximate sense, the “excitation” process X(t) is also effectively repiaced by a constant mean
# plus a Gaussian white noise. Of course, this replacement excitation process cannot be log-
nermal.

Having the values of b, Q) 4 and g, the mean and mean-square values of the time T to
reach a given crack size a,can be computed using Equations (72) and (78) for different values of
k = ap/(BAQ,), or equivalently for different values of A. Figure 54 shows the results of such
computations, in terms of E{T] and E[T] * oy, where op = (E[T?] ~ E[T) ?)"?is the standard
deviation of T. The mean values E[T)] are practically uninfluenced by the choice of A since the
last two terms in Equation (72) are several orders of magnitude smaller than the tirat term.
However, the statistical dispersion oy, increases as A increases. This Aoy relationship agrees
with our earlier observation concerning the results of Yang (References 1, 22), and of Virkler,
Hillberry und Goel (References 3 and 4), the former case being equivalent to &4 — oo and the
latter case to A — 0. Estimates of the mean E[T] and standard deviation, oy, of T were also
obtained directly from the data of the 16 specimens, and the results plotted in Figure 56.
Comparison between Pigures 54 and 65 shows that A = 8,000 i3 a reasonable choice for this
particular mathematical model and data set.
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Some computer simulated sample functions using the present mathematical model
described in Equations (34) and (35) are shown in Figure 56. These have been obtained using
parameters uy = 1.0206, o, = 0,043286, b = 0.92071, Q,/ab = 1,1051 X 10~%, A = 8,000 and an
average Poisson pulse rate of A = 0.1. Their general characteristics are remarkebly similar to the

actual records in Figure 50.

0.04 s
o
0.03 ’
£
]
o
§ 0.02
4]
0.01
o.o | | L 1 ] 1 | ] |

0 2 4 6 8 10 12 14 18 18 20
Fiight Time, t - hr X 10?

Figure 56. Simulated Sample Functions of Crack Propag&tion Time-Histories for WPB
Fastener Holes

It has been suggested that the distribution of the time T to reach a given crack size a, can
be approximated by a two-parameter Weibull distribution (Reference 1),

Fi(t) = P[T=t] = 1-—exp[—(t/8,)"] (83)

in which ayand 8, are, of course, related to the values of E[T] and ¢ Approximate distribution
functions of T thus computed are shown in Figure 57 as solid curves for a, = 0.01, 0.02 and 0.04
inch, respectively. Also displayad in Figure 57 as circles, triangles and rectangles are the
corresponding distributions of the test results obtained from Figure 50. It is obaserved from
Figurs 57 that on the basis of the approximation, Equation (83), the test results correlate very
well with the present statistical faligue crack propagation model.

For additional comparison, the above procedure has been applied to another set of date, to
be referred to as XWPB where X signifies a 16% load trunsfer in the fasteners and WPB has the
same meaning us before. This second data set also has been censored to include only those with
a crack length growth from 0,004 to 0.07 inch, resulting in a total of 22 specimens. The crack
propagation time-histories of these specimens are shown in Figure 58. The linear regression
analysie for the estimation of model parameters, illustrated in Figure 59, resulted in

b = 0.985, Qo/a’ = 2.4414x 10 "%, oy = 0.12896
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Figure §7. Comparison Between Weibull-Type Approximation for the Distributions of
Random 7T'ime to Reach a Given Crack Size and Actual Test Results for
WPFB Fastener Holes

An application of Equations (81) and (82} yielded
= 1,0451, 8 = 0.0503

The computed E[T] + oy curves for a rumber of A values are shown in Figure 60. When they
are compared with the specimen mean and specimen standard deviation, shown iri Figure 61, the
best agreement is obtained for A = 8000. Approximate distributions of the random times to
a, = 0,008, 0.025 and 0,07, based on a Weibull form, Equation (83), are shown in Figure 62, along
with the sample distributions. Computer generated simnlations using A = 8000 and A\ = 0.1 are
shown in Figure 63, Again, excellent theoretical and experimental correlations are seen in this
second example.
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Figure 58. Actual Crack Propagation Time-Histories of Some XWPB Fastener Holes

Figure 59. Regression Analysis for the Estimation of Model Parameters for XWPB
Fastener Holes
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SECTION Vil

CONCLUSIONS

1. Spectrum Loading

A fracture mechanics-based statistical model developed in Reference 1 for the prediction
of fatigue erack growth behavior under any single test condition has been extended to the case of
spectrum loading, The distributions of propagation life to reach any given crack size and the
crack size at any specific number of load cycles were obtained. A specific block loading was
chogen and applied to IN100 laboratory test specimens to obtain statistically meaningful crack
propagation test data for the verification of the statistical model. The same block loading was
used for the theoretical prediction of the crack propagation behavior of IN100 based on the
model, Comparison of the theoretical results with the verification test data indicated a
reasonable correlation. The model provided conservative predictions of both the mean behavior
and the variability of the data. Thus, the proposed fracture mechanics-based statistical model is
quite practical, since it requires only a small nonhomogeneous data base for predicting crack
propagation under spectrum loading. Crack growth retardation or acceleration effects due to the
applied spectrum (temperature, loading) must be addressed in further work on this model,
However, the theorstical model is judged appropriate for practical applications due to its
simplicity and conservative predictions.

2. Related Developments

A statistical model based on the Paris crack growth rate function for fatigue crack growth
in IN100 was investigated and applied to test results at various temperatures, loading
frequencies, and stress ratios. Again, the distributions of life to reach any specific crack size and
the crack size at any specific .iumber of cycles were obtained. Homogeneous test environments
were assumed to avoid excessive extrapolation into the region where crack growth data did not
exigt. The life integration was then based on the best-fitted crack growth rate parameters, This
approach was necessary in order to obtain the homogeneous data sets, referred to as the
extrapolated teat results, for the correlation study.

The correlation between the statistical model and the extrapolated test results was
reasonable. Care should be taken in the application of this model us the Paris crack growth rate
function is applicable only to a certain region of the stress intensity range. This model is
mathematically simple and practical for engineering applicationa,

Closed form solutions have been obtained for the statistical moments of the random time
when a dominant crack reaches a given size for a rather general class of crack growth
mechanisms. The key to this success was the approximation of the random crack size by a
diffusive Markov process. Theoretically, the approximation introduced an error associated with
the possibility for the crack propagation rate to be negative at times. However, in terms of
statistical properties, the error was negligible if the tendency for drift dominates tho tendency
for diffusion. The application of the proposed theory to two real examples seemed to
substantiate our contention, The theoretical results have been shown to correlate well with the
experimental results when the parameters for the mathematical model were obtained from a
linear regression procedure. Since the calculation of a few key parameters using such a
procedure doss not require a very large data base, the proposed theory is quite practical in view
of the limited experimental results available at the present time.
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